Лекция 12
ГЛАВА 12 Намерения
Что мы расскажем:
· Обзор намерений
· Явные и неявные намерения
· Передача данных между занятиями
· Возврат результатов из намерений
Архитектура Android совершенно уникальна в плане создания приложений. У него есть понятие компонентов, а не простых объектов. И то, как Android заставляет эти компоненты взаимодействовать, можно найти только на платформе Android.
Android использует намерения как способ взаимодействия своих компонентов - он использует их для передачи сообщений между компонентами. В этой главе мы рассмотрим намерения: что это такое и как мы их используем.
Что такое намерения
Намерение - это «абстрактное описание операции, которую необходимо выполнить».1)
«Это уникальная концепция Android, потому что ни одна другая платформа не использует то же самое, что и средство активации компонентов. В предыдущих главах мы рассмотрели, что находится внутри приложения для Android. Возможно, вы помните, что приложение - это просто набор «компонентов» (см. Рис. 12-1 в книге), которые слабо связаны вместе, и каждый компонент объявлен в файле манифеста.
Что делать, если вам нужно, чтобы ваши компоненты общались друг с другом (например, запускали другое Activity)? Как вы думаете, как нам с этим справиться? Если у вас есть опыт программирования для настольных компьютеров, вы можете сделать что-то вроде кода из Листинга 12-1.
Листинг 12-1. Неправильный способ активировать другое действие
class MainActivity : AppCompatActivity {
 button.setOnClickListener(object: View.OnClickListener {
	override fun onClick(v: View?) {
	SecondActivity (). // Не сработает
	}

1)https://developer.android.com/reference/android/content/Intent

 	})
}
class SecondActivity : AppCompatActivity {}
Листинг 12-1 может показаться простым и прямым способом запустить другое Activity, но, к сожалению, это неверно и не сработает. Действие - это не простой объект, это компонент. Вы не можете активировать компонент, просто создав его экземпляр. Чтобы запустить Activity, вам необходимо создать объект Intent и запустить его с помощью функции startActivity (). Код показан в листинге 12-2.
Листинг 12-2. Как активировать другое действие
button.setOnClickListener {
 val intent = Intent(this@MainActivity, SecondActivity::class.java) ➊ ➋
 startActivity(intent) ➌
}

➊ this @ MainActivity Первым параметром конструктора Intent является объект Context. Мы передали это @ MainActivity, потому что класс Activity является подклассом Context, поэтому мы можем его использовать. В качестве альтернативы мы также могли использовать getApplicationContext (); контекст приложения также был бы принят.
➋ SecondActivity :: class.java. Второй параметр - это объект класса. Это класс компонента, которому мы хотим доставить сообщение. Это синтаксис отражения. Как вы, возможно, уже знаете, отражение позволяет нам проверять структуру наших программ во время выполнения.
SecondActivity :: class будет ссылаться на ссылку времени выполнения SecondActivity, если бы это был класс Kotlin (KClass), но это не так. SecondActivity - это класс Java (библиотеки Android все еще находятся на Java), поэтому мы называем его SecondActivity :: class.java.
➌ Мы запускаем Activity, вызывая startActivity () и передавая ему объект намерения.
Платформа Android увлечена слабой связью, и активация компонентов находится в середине ее архитектуры. Приложение - это просто набор компонентов, удерживаемых вместе файлом манифеста, и каждый из этих компонентов можно активировать, отправив ему сообщение. Основная идея заключается в том, что ни один из компонентов не взаимодействует напрямую с другим. Если один компонент, например, Activity, хочет общаться с другим компонентом, он должен отправить запрос в среду выполнения Android и позволить среде выполнения разрешить этот запрос. Вы можете думать о намерении как о механизме передачи сообщений в Android: он склеивает компоненты вместе.
Слабая связь
У вас может возникнуть соблазн подумать, что Android был чрезмерно продуман, потому что зачем идти на все, чтобы запустить еще один экран? Почему нельзя просто создать экземпляр объекта и покончить с ним - это уже хорошо известная идиома программирования. Почему мы должны заменить это на активацию компонента?
Что ж, подход Android к интерактивности программ довольно уникален, потому что он очень ориентирован на пользователя. Это дает пользователю много возможностей делать выбор в отношении того, как им манипулировать и создавать данные. Мобильные пользователи обычно ориентированы на задачи, а не на приложения; им все равно, какое приложение что делает, пока оно выполняется.
Рассмотрим обычный сценарий использования устройства Android. Пользователь открывает приложение «Контакты» и выбирает, например, контактную информацию Теда Хагоса. У этого контакта может быть адрес электронной почты, мобильный телефон и, скажем, имя в Twitter.
Пользователь мог нажимать на каждую точку контакта Теда, и каждый раз Android запускал другое приложение; почтовый клиент по умолчанию, номеронабиратель и загруженное приложение Twitter. Пользователя, вероятно, не волнует, какое приложение было запущено или сколько приложений открыто в данный момент; он просто хочет отправить сообщение. Если этому пользователю не нравится приложение электронной почты или твиттер-клиент по умолчанию, он может удалить эти приложения и заменить их чем-то другим, и ему следует вернуться к работе. На рис. 12-2 показана простая раскадровка при использовании приложения «Контакты».
Чтобы такое взаимодействие могло происходить, Android необходимо было спроектировать платформу, уделяя особое внимание слабой связи и подключаемости. Компонент, такой как приложение "Контакты", не должен знать каких-либо конкретных подробностей о том, какое приложение он должен использовать при нажатии на адрес электронной почты или номер мобильного телефона. Разрешение того, какое приложение использовать для определенного типа данных, не должно быть жестко закреплено в приложении «Контакты»; в противном случае пользователь не сможет выбрать, какое приложение использовать при отправке электронных писем или твитов.
Вот здесь и появляются намерения. Когда компоненту необходимо выполнить задачу, которая выходит за рамки его возможностей для обслуживания, он может выйти на платформу Android с помощью намерений и спросить, есть ли какое-либо приложение, которое может (или хочет) выполнить запрос.
Два вида намерений
Есть два вида намерения: неявное и явное. Чтобы проиллюстрировать разницу между этими двумя видами намерений, может быть полезна аналогия. Допустим, мы попросим кого-нибудь купить сахара. Если бы мы дали инструкцию вроде «не могли бы вы купить немного сахара?» Без дополнительных подробностей, это было бы эквивалентно неявному намерению, потому что этот человек мог бы купить сахар где угодно. С другой стороны, если бы мы дали инструкции вроде «не могли бы вы пойти в магазин ABC на третьей улице и купить немного сахара», это было бы эквивалентно явному намерению. Предыдущий пример кода в листинге 12-2 является примером явного намерения.
Неявные намерения очень эффективны, потому что они позволяют вашему приложению использовать преимущества других приложений. Ваше приложение может получить функции, которые вы не писали сами. Вы можете, например, создать намерение, которое открывает камеру, снимает и сохраняет фотографию - без написания специального кода для камеры.
Намерения могут переносить данные
Намерения могут гораздо больше, чем запускать другие действия; вы также можете отправлять и получать данные с его помощью. Предполагая, что у нас есть два Activity с именами MainActivity и SecondActivity, и когда в MainActivity щелкается объект Button View, мы хотим запустить и отправить некоторые данные в SecondActivity. Чтобы отправить данные в SecondActivity, вам необходимо:
1. Создайте намерение. В нашем примере это будет явное намерение.
2. Добавьте данные в намерение с помощью метода putExtra.
3. Запустите другое действие, вызвав метод startActivity; на этом этапе среда выполнения Android запустит SecondActivity.
4. В методе onCreate для SecondActivity мы можем извлечь данные из Intent с помощью метода getExtra.
На рис. 12-3 показана простая диаграмма последовательности того, как все это работает.
Примечание. Большинство вызовов функций в Android, таких как startActivity, onCreate и т. д., являются асинхронными, поэтому стрелки, используемые на диаграмме последовательности, представляют собой стрелки с половинной палочкой. Последовательность вызовов, показанная на рисунке 12-3 (и на других диаграммах последовательности), является только приблизительной, на самом деле они не могут происходить в таком порядке.
Чтобы представить эти шаги в коде, он может выглядеть как Листинг 12-3.
Листинг 12-3. Фрагмент кода из MainActivity
button.setOnClickListener {
 val intent = Intent(this@MainActivity, SecondActivity::class.java)
 intent.putExtra("main_activity_data", editText.text.toString())
 startActivity(intent)
}

Параметры метода putExtra представляют собой пару "ключ-значение"; первый параметр - это ключ или имя, а второй параметр - значение. Параметр имени всегда будет иметь тип String, но второй параметр (значение) может не всегда иметь тип String. Метод putExtra перегружен, он может принимать ряд типов для второго параметра.
Если вы набираете в Android Studio достаточно медленно, вы можете увидеть параметры, показанные в подсказке кода, когда вы набираете метод putExtra; см. Рисунок 12-4.
[image:]
Рисунок 12-4. Подсказка кода в AS3, показывающая перегруженную функцию putExtra ()
В листинге 12-3 мы помещаем String во второй параметр putExtra; мы можем использовать и другие типы (например, базовые типы, такие как Int, Byte, Char, Float, Short и т. д.). Мы также можем использовать Bundles, Parcelables или Serializables.
После вызова метода putExtra для Intent следующим шагом будет вызов startActivity.
Это запустит механизм разрешения намерений среды выполнения Android и в конечном итоге запустит SecondActivity.
Теперь переходим к SecondActivity. Естественно, вы хотите извлечь данные, которые мы отправили из MainActivity. Для этого вам нужно сделать две вещи. Вам нужно:
1. Получить ссылку на объект Intent; а также
2. Вызовите функцию getExtra из Intent. Этот код может выглядеть так:
val myintent = getIntent ()
val data = myintent.getStringExtra ("main_activity_data")

Но из-за магии Котлина с геттерами и сеттерами функция getIntent () становится свойством намерения. Итак, мы можем переписать это так:
val data = intent.getStringExtra ("main_activity_data")
Получение результатов от другого действия
В предыдущем разделе нам удалось запустить вторую Activity и отправить в нее данные. В этом разделе мы будем опираться на наш предыдущий пример, но на этот раз мы также отправим некоторые данные обратно в MainActivity. Для этого нам необходимо:
1. Создайте явное намерение.
2. Добавьте данные в намерение с помощью метода putExtra.
3. Запустите другое действие, вызвав метод startActivityForResult.
Как и в методе startActivity, нам нужно передать объект Intent этого метода в качестве параметра. Кроме того, нам также необходимо передать ему код запроса. Код запроса действует как своего рода токен. Когда мы запускаем Activity и ожидаем возврата некоторых результатов, любое другое Activity может вернуть любой результат. Если у нас есть несколько действий в рамках проекта, это может сбить с толку, когда мы вернем результаты. Нам нужен способ отслеживать, кто отправляет эти результаты, и код запроса поможет нам в этом. Как только мы вызовем startActivityForResult, запустится SecondActivity.
4. В методе onCreate для SecondActivity мы можем извлечь данные из Intent с помощью метода getExtra.
5. Мы можем выполнить некоторые вычисления в SecondActivity. Когда мы будем готовы отправить данные, мы сделаем следующее:
a. Получите ссылку на объект Intent.
b. Добавьте данные в Intent с помощью метода putExtra.
c. Вызовите метод setResult для SecondActivity. Здесь нам нужно сделать две вещи:
(1) установить статус вызова Intent, если ошибок нет, вы можете установить его в Activity.RESULT_OK; и
(2) передать объект намерения, содержащий дополнительные функции, в качестве второго параметра.
d. Вызов метода finish () из SecondActivity. Это остановит SecondActivity и эффективно отправит Intent тому компоненту, который называется SecondActivity, то есть MainActivity.
6. Вернемся к MainActivity. Какие бы результаты мы ни ожидали от SecondActivity - или любого другого Activity, если на то пошло - можно получить из обратного вызова onActivityResult. Этот метод имеет три параметра в параметре: код запроса, код результата и объект Intent, который был отправлен обратно SecondActivity.
На рисунке 12-5 показана диаграмма последовательности того, как отправлять и получать результаты от другого действия.
Когда вы отправляете данные в другое действие и ожидаете получить обратно некоторые данные, вам необходимо использовать startActivityForResult вместо startActivity. Код для этого выглядит так:
startActivityForResult(intent, SECOND_ACTIVITY)
Как и startActivity, вы передаете объект Intent в startActivityForResult, в дополнение к объекту Intent вам также необходимо передать код запроса (SECOND_ACTIVITY). Этот код запроса важен для MainActivity, потому что мы будем использовать его, чтобы отслеживать, от кого мы получаем данные обратно. Код запроса - это тип Int, который необходимо определить. Неважно, какой номер вы будете использовать для этого, если у вас есть несколько кодов запроса, каждый из них отличается. Если вы отправляете и ожидаете данные от нескольких действий, вы будете использовать код запроса, чтобы отслеживать, какие из других действий отправляют данные обратно вам. Таким образом, когда вернутся результаты, мы сможем сказать, что мы пытались сделать в первую очередь.
В SecondActivity, когда мы готовы отправить данные обратно, нам нужно создать еще один объект Intent и загрузить его данными с помощью метода putExtra. После этого мы вызываем метод setResult для SecondActivity. Метод setResult принимает два параметра: код результата и объект Intent. Если с приложением все в порядке, используйте Activity.RESULT_OK; в противном случае используйте Activity.RESULT_CANCELLED. RESULT_OK, который фактически равен -1, а RESULT_CANCELLED равен 0, но, пожалуйста, не используйте литералы Int, всегда используйте предоставленные константы класса.
Когда вы вызываете метод finish для SecondActivity, он переходит в состояние остановки, а MainActivity снова выходит на передний план, поэтому он перезапускается и возобновляется.
Какие бы данные ни отправляла SecondActivity, мы должны иметь возможность получить их с помощью обратного вызова onActivityResult MainActivity. В листинге 12-4 показан типичный переопределенный обратный вызов onActivityResult.
Листинг 12-4. onActivityResult
override fun onActivityResult(requestCode: Int, resultCode: Int, data:
Intent?) {
 super.onActivityResult(requestCode, resultCode, data)
 if((requestCode == SECOND_ACTIVITY) and (resultCode == Activity.RESULT_OK)) {
 // extract data here
 }
}

Примечание. Как узнать, нужно ли переопределить обратный вызов onActivityResult? Если вы запускаете другое Activity с помощью startActivityForResult, вам следует переопределить обратный вызов onActivityResult - именно здесь вы можете получить все данные, которые были отправлены вам обратно.
Неявные намерения
Все, что мы видели в предыдущих разделах, является примерами явных намерений. Явное намерение сообщает среде выполнения Android, какой именно компонент активировать. Возвращаясь к нашей аналогии, это все равно что сказать кому-то пойти в продуктовый магазин на 3-й улице, чтобы купить сахар. С другой стороны, неявное намерение просто дает указание «получить немного сахара» - не имеет значения, где и как. Неявное намерение определяет только действие.
Когда вы используете неявное намерение, общая идея заключается в том, что вы хотели бы использовать функциональность, которой нет в вашем приложении - если бы она действительно существовала в вашем приложении, вы бы в первую очередь использовали явное намерение; - Итак, вы просите среду выполнения Android найти приложение где-нибудь на устройстве, которое может обработать ваш запрос.
Из предыдущих примеров мы знаем, что намерения могут переносить данные; мы сделали это с Extras. Дополнения - это одна из четырех вещей, которые может иметь намерение; остальные три - это действие, данные и категория. Действие - это операция, которую вы хотите выполнить (например, ПРОСМОТР, НАБОР, ОТВЕТ, ВЫЗОВ и т. Д.). Данные относятся к тому, с какой информацией должно работать Действие (это URI, номер телефона, изображение и т. д.), а Категория относится к тому, какие компоненты имеют право работать с этим намерением. Иногда среде выполнения требуется Категория, чтобы отфильтровать или выбрать только те компоненты, которые могут реагировать на наше намерение. Вы можете отправлять намерения в Activity, BroadcastReceivers и Services, но в этой главе мы будем иметь дело только с Activity.
Как правило, вам нужно сделать четыре вещи, чтобы неявное намерение сдвинулось с мертвой точки.
Вам нужно:
1. Создайте объект Intent
2. Задайте его действие (например, «просмотреть карту», ​​«позвонить по номеру», «сделать снимок» и т. д.)
3. Установите свои данные; а также
4. Запустите намерение
В листинге 12-5 показано, как все это может выглядеть в коде.
Листинг 12-5. Пример намерения запустить веб-браузер
val m_intent = Intent() ➊
m_intent = setAction(Intent.ACTION_VIEW) ➋
m_intent = setData(Uri.parse("https://workingdev.net")) ➌
startActivity (m_intent) ➍

➊ Создайте намерение, используя конструктор no-arg.
➋ Установите действие Intent. В этом примере мы хотим что-то посмотреть; это может быть контакт, веб-страница, карта, какое-то изображение и т. д. На данный момент среда выполнения Android еще не знает, что вы хотите просмотреть. ACTION_VIEW - одно из многих действий намерения, которые вы можете использовать. Вы можете найти другие виды действий на официальном сайте Android (http://bit.ly/androidcommonintents).
➌ Установите свои данные. На данный момент среда выполнения Android имеет довольно хорошее представление о том, чем вы занимаетесь. В этом примере Uri - это веб-страница. Android довольно умен, чтобы понять, что мы хотим просмотреть веб-страницу.
➍ Android будет искать все приложения на устройстве, которые лучше всего соответствуют этому запросу. Если он найдет более одного приложения, он позволит пользователю выбрать, какое из них. Если он найдет только один, он просто запустит это приложение.
Мы можем просто коды из листинга 12-16 превратить в нечто вроде этого
m_intent = Intent (Intent.ACTION_VIEW, Uri.parse ("https://workingdev.net")) startActivity (m_intent)
ACTION и DATA могут быть переданы в качестве аргументов конструктору Intent.
Любой компонент, который может отвечать на наше намерение, не должен быть запущен, чтобы получить намерение. Помните, что у всех приложений должен быть файл манифеста. Каждое приложение объявляет свои возможности в файле манифеста, в частности, в разделе <intentfilter>. В диспетчере пакетов Android есть вся информация обо всех приложениях, установленных на устройстве. Среде выполнения Android требуется только информация в файле манифеста, чтобы увидеть, какие из приложений способны и / или имеют право реагировать на намерение.
В следующих разделах мы рассмотрим неявные и явные намерения более подробно. Мы создадим примеры проектов, чтобы вы могли попрактиковаться на них.
Демонстрация 1: запуск занятия
Мы не будем делать ничего особенного с этим проектом. Мы просто создадим два Activity: MainActivity и SecondActivity. Мы запускаем SecondActivity из MainActivity при нажатии кнопки. Детали проекта показаны в Таблице 12-1.
Таблица 12-1. Детали проекта для демонстрационного приложения
	Детализация проекта
	Значение

	Название приложения
	CH12LaunchAnotherActivity

	Домен компании
	Название вашего сайта

	Поддержка Kotlin
	Да

	Форм-фактор
	Только для телефона и планшета

	Минимальный SDK
	API 23 Marshmallow

	Вид деятельности
	Пусто

	Название действия
	MainActivity

	Название макета
	activity_main

	Обратная совместимость
	Да. AppCompat

Когда проект откроется в главном окне, создайте SecondActivity. Один из способов сделать это - выбрать «приложение» в окне инструментов «Проект», как показано на рисунке 12-6, затем на главной панели инструментов нажать «Файл» ➤ «Создать» ➤ «Действие» ➤ «Пустое действие».
[image:]
Рисунок 12-6. Выберите «приложение» в окне инструмента «Проект».
Назовем его SecondActivity, как показано на рисунке 12-7.
[image:]
Рисунок 12-7. Новая активность Android
Затем перейдите в activity_main.xml (представление дизайна). Удалите элемент TextView и замените его представлением Button. Разместите кнопку примерно в центре макета, затем используйте кнопку «вывести ограничение», как показано на рисунке 12-8.
Затем откройте файл activity_second.xml также в представлении «Дизайн», затем добавьте представление «Кнопка» и отцентрируйте его в макете, как и в случае с activity_main.
[image:]
Рисунок 12-8. Центрирование представления кнопок на макете
На этом этапе у вас должны быть следующие элементы и классы View для работы:
· MainActivity.Kt и связанный с ним activity_main.xml, это из мастера создания проекта
· SecondActivity.Kt. и связанный с ним activity_second.xml, это из мастера создания Activity
· Объект представления «Кнопка» в activity_main, идентификатор которого равен «button» - это идентификатор по умолчанию для первого элемента Button в проекте
· Другой объект представления Button в activity_second, идентификатор которого равен «button2» - это идентификатор по умолчанию для второго элемента Button в проекте
В листингах 12-6 и 12-7 показаны коды activity_main и activity_second соответственно; вы можете использовать их в качестве справочника или для сравнения, если вы пытались создать проект самостоятельно.
Листинг 12-6. /app/res/layout/activity_main.xml
<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.ConstraintLayout xmlns:android=http://schemas.
android.com/apk/res/android
 xmlns:app=http://schemas.android.com/apk/res-auto
 xmlns:tools=http://schemas.android.com/tools
 android:layout_width="match_parent"
android:layout_height="match_parent"
 tools:context=".MainActivity">
 <Button
 android:id="@+id/button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginTop="80dp"
 android:text="Button"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent" />
</android.support.constraint.ConstraintLayout>

Листинг 12-7. /app/res/layout/activity_second.xml

<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.ConstraintLayout xmlns:android=http://schemas.
android.com/apk/res/android
 xmlns:app=http://schemas.android.com/apk/res-auto
 xmlns:tools=http://schemas.android.com/tools
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".SecondActivity">
 <Button
 android:id="@+id/button2"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginTop="88dp"
 android:text="Button"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent" />
</android.support.constraint.ConstraintLayout>

В листингах 12-8 и 12-9 показаны аннотированные коды для MainActivity.Kt и SecondActivity.Kt соответственно.
Листинг 12-8. Полный листинг и аннотированный код MainActivity.Kt
import android.content.Intent
import android.support.v7.app.AppCompatActivity
import android.os.Bundle
import kotlinx.android.synthetic.main.activity_main.*
import java.util.logging.Logger

class MainActivity : AppCompatActivity() {
 val Log = Logger.getLogger(MainActivity::class.java.name) ➊
 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.activity_main)
 Log.info("onCreate") ➋
 button.setOnClickListener { ➌
 val m_intent = Intent(this@MainActivity, SecondActivity::class.java) ➍
 startActivity(m_intent) ➎
 }
 }
 override fun onPause() {
 super.onPause()
 Log.info("onPause")
 }
 override fun onRestart() {
 super.onRestart()
 Log.info("onRestart")
 }
 override fun onResume() {
 super.onResume()
 Log.info("onResume")
 }
}

➊ Мы определяем простой объект Logger. Мы могли бы использовать класс android.util.Log, но я думаю, что большинство из вас, кто будет читать эту книгу, имеют опыт работы с Java, так что это должно показаться вам знакомым. Параметр MainActivity :: class.name примерно эквивалентен getClass (). GetName () в Java. В качестве альтернативы вы также можете просто передать любую строку методу getLogger () - например, getLogger («Мой проект»), но обычной практикой является использование имени класса для объекта Logger.
➋ Мы просто создаем запись в журнале, в которой говорится, что мы выполняем обратный вызов onCreate для MainActivity.
➌ Это базовая настройка для прослушивателя нажатий кнопки; вы уже это сделали.
➍ Эта строка создает объект Intent. Первым параметром объекта Intent является объект Context; вы можете использовать здесь контекст приложения, но в нашем случае мы использовали контекст действия. this @ MainActivity - ссылка на контекст MainActivity. Второй параметр - это целевой объект намерения. Это конкретная инструкция для среды выполнения Android, в которой мы хотим активировать этот объект. Второй параметр должен иметь тип Class. Обозначение объекта класса MainActivity - MainActivity :: class.java.
➎ Запускаем Intent.
Листинг 12-9. SecondActivity.Kt
import android.support.v7.app.AppCompatActivity
import android.os.Bundle
import kotlinx.android.synthetic.main.activity_second.*
import java.util.logging.Logger

class SecondActivity : AppCompatActivity() {
 val Log = Logger.getLogger(SecondActivity::class.java.name)
 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.activity_second)
 Log.info("onCreate")
 button2.setOnClickListener {
 finish() ➊
 }
 }
 override fun onStart() {
 super.onStart() ➋
 Log.info("onStart")
 }
 override fun onStop() {
 super.onStop()
 Log.info("onStop")
 }
}

➊ Когда мы вызываем это, SecondActivity будет в состоянии «остановлено».
➋ Когда SecondActivity входит в обратный вызов onStart, он будет виден пользователю. Какое бы действие ни было на переднем плане, теперь оно будет перемещено на задний план; MainActivity перейдет в состояние «приостановлено».
Когда вы вызываете startActivity из MainActivity, среда выполнения активирует SecondActivity. Когда SecondActivity станет видимым для пользователя, что должно произойти во время onStart SecondActivity, MainActivity перейдет в состояние «приостановлено».
Когда вы вызываете finish () из SecondActivity, он переходит в состояние «остановлено».
MainActivity будет выведен на передний план, поэтому он повторно войдет в состояния «возобновить» и «перезапустить». Это взаимодействие показано на рисунке 12-9.
Рисунок 12-9. Диаграмма последовательности для MainActivity, SecondActivity и среды выполнения
Я переопределил некоторые обратные вызовы жизненного цикла для MainActivity и SecondActivity. Вы можете просмотреть журналы, чтобы увидеть время и последовательность вызова методов жизненного цикла. Вы можете использовать окно инструмента Logcat для проверки журналов приложений и системы, как показано на рис. 12-10.
[image:]
Рисунок 12-10. Окно инструмента Logcat
Демонстрация 2: отправка данных в действие
В этом проекте мы продолжим исследовать базовую механику явных намерений.
Однако вместо того, чтобы просто запускать другое Activity, мы также отправим ему некоторые данные.
Мы подробно рассмотрим, как добавить «Extra» в намерение и как его извлечь.
Опять же, если вы хотите писать код, детали проекта показаны в Таблице 12-2.
Таблица 12-2. Подробности проекта
	Детализация проекта
	Значение

	Название приложения
	CH12SendDataToAnotherActivity

	Домен компании
	Название вашего сайта

	Поддержка Kotlin
	Да

	Форм-фактор
	Только для телефона и планшета

	Минимальный SDK
	API 23 Marshmallow

	Вид деятельности
	Пусто

	Название действия
	MainActivity

	Название макета
	activity_main

	Обратная совместимость
	Да. AppCompat

Как и в предыдущем разделе, нам также нужно создать еще одно Activity. Создайте еще одно действие и назовите его SecondActivity.
Вернитесь к activity_main и откройте его в режиме конструктора. Удалите TextView «Hello» из макета, затем добавьте EditText и Button view, как показано на рисунке 12-11. Выровняйте элементы, отцентрируйте их в макете и используйте «логическое ограничение», как мы делали в предыдущем демонстрационном проекте.
[image:]
Рисунок 12-11. activity_main.xml, представление дизайна
Затем откройте activity_second в представлении дизайна, затем добавьте к нему элемент TextView. Используйте «ограничение вывода» (как обычно) и настройте некоторые атрибуты, такие как textSize и text Alignment, как показано на рисунке 12-12.
[image:]
Рисунок 12-12. activity_second.xml, режим разработки
К настоящему времени у вас должны быть следующие элементы и классы View для работы:
· MainActivity.Kt и связанный с ним activity_main.xml; это из мастера создания проекта.
· SecondActivity.Kt. и связанный с ним activity_second.xml; это из мастера создания действий.
· EditText и объект просмотра Button в activity_main, идентификаторы которых «EditText» и «button» соответственно. editText - это идентификатор по умолчанию для первого элемента PlainText в проекте.
· Объект представления TextView в activity_second с идентификатором «textView» - это идентификатор по умолчанию для первого элемента TextView в проекте.
В листингах 12-10 и 12-11 показан код для activity_main.xml и activity_two.xml соответственно.
Листинг 12-10. /app/res/layout/activity_main.xml
<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.ConstraintLayout xmlns:android=http://schemas.
android.com/apk/res/android
 xmlns:app=http://schemas.android.com/apk/res-auto
 xmlns:tools=http://schemas.android.com/tools
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".MainActivity">
 <Button
 android:id="@+id/button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginTop="31dp"
 android:text="Button"
 app:layout_constraintEnd_toEndOf="@+id/editText"
 app:layout_constraintStart_toStartOf="@+id/editText"
 app:layout_constraintTop_toBottomOf="@+id/editText" />
 <EditText
 android:id="@+id/editText"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginTop="49dp"
 android:ems="10"
 android:inputType="textPersonName"
 android:text="Name"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent" />
</android.support.constraint.ConstraintLayout>

Листинг 12-11. /app/res/layout/activity_second.xml
<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.ConstraintLayout xmlns:android=http://schemas.
android.com/apk/res/android
 xmlns:app=http://schemas.android.com/apk/res-auto
 xmlns:tools=http://schemas.android.com/tools
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".SecondActivity">
 <TextView
 android:id="@+id/textView"
 android:layout_width="324dp"
 android:layout_height="wrap_content"
 android:text="TextView"
 android:textAlignment="center"
 android:textSize="36sp"
 tools:layout_editor_absoluteX="35dp"
 tools:layout_editor_absoluteY="78dp" />
</android.support.constraint.ConstraintLayout>

В листингах 12-12 и 12-13 показаны аннотированные коды для MainActivity и SecondActivity соответственно.
Листинг 12-12. Основное занятие
import android.content.Intent
import android.support.v7.app.AppCompatActivity
import android.os.Bundle
import kotlinx.android.synthetic.main.activity_main.*

class MainActivity : AppCompatActivity() {
 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.activity_main)
 button.setOnClickListener {
 val m_data = editText.text.toString() ➊
 val m_intent = Intent(this@MainActivity, SecondActivity::class.java) ➋
 m_intent.putExtra("main_activity_data", m_data) ➌
 startActivity(m_intent) ➍
 }
 }
}

➊ Мы получаем значение того, что пользователь ввел в объект EditText. Синтаксис для этого на самом деле editText.getText (). ToString (), но Kotlin упрощает нашу жизнь с помощью синтаксических сахаров геттеров и сеттеров. Мы можем использовать свойство «текст» для установки или получения значения времени выполнения представления EditText. Мы можем использовать свойство «текст» для установки или получения значения времени выполнения представления EditText. Нам пришлось вызвать функцию toString (), потому что тип возвращаемого значения EditText.getText () - Editable или CharSequence. Мне нужно, чтобы он был типа String, потому что putExtra не принимает Editable или CharSequence; он принимает Strings.
➋ Мы создаем явное намерение, и его целью является SecondActivity.
➌ Теперь мы можем добавить некоторые данные в Intent. Два параметра putExtra выглядят как пара "ключ-значение"; и они ими являются. Ключ - это первый параметр, «main_activity_data», а значение - это содержимое среды выполнения EditText - конечно, преобразованное в String.
➍ Мы отправляем объект Intent.
Листинг 12-13. SecondActivity
import android.support.v7.app.AppCompatActivity
import android.os.Bundle
import kotlinx.android.synthetic.main.activity_second.*

class SecondActivity : AppCompatActivity() {
 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.activity_second)
 val m_data = intent.getStringExtra("main_activity_data") ➊ ➋
 textView.setText(m_data) ➌
 }
}

➊ Мы получаем ссылку на объект Intent, связанный с SecondActivity, мы не создаем здесь новый объект Intent. Синтаксис на самом деле getIntent (), но из-за волшебного соуса Kotlin мы можем ссылаться на него как на простое намерение
➋ Метод getStringExtra объекта Intent делает то, что вы думаете. Он извлекает некоторые данные из объекта Intent с помощью идиомы карты; вы дадите ему ключ, вы получите значение. В этом случае мы дали ему ключ main_activity_data - это тот же ключ, который мы использовали в MainActivity.
Мы использовали метод getStringExtra, потому что знаем, что он содержит String. Гетер должен соответствовать вкладышу. Если вы поместите Byte, Array или Bundle, вы должны получить его getByteExtra, getArrayExtra и getBundleExtra соответственно.
➌ Мы меняем значение времени выполнения TextView. Мы устанавливаем его на все, что мы получили от Intent extra.
Запустите программу и попробуйте ввести EditText. Когда вы нажимаете кнопку, TextView на SecondActivity должен отображать все, что вы набрали.
Демонстрация 3: отправка и получение данных в действие и обратно
В этом проекте мы попросим пользователя ввести свой вес и рост, а затем рассчитаем его ИМТ (индекс массы тела). У проекта есть два Activity: MainActivity и SecondActivity.
Мы попросим пользователя ввести свой рост и вес в MainActivity. Мы отправим эти данные в SecondActivity через Intent. В SecondActivity мы будем извлекать данные из Intent, которые были отправлены нам MainActivity. Мы будем использовать данные о росте и весе для расчета ИМТ, а затем отправим их обратно в MainActivity.
Если вы хотите продолжить, я перечислил детали проекта в Таблице 12-3.
Таблица 12-3. Детали проекта для демонстрационного приложения
	Детализации проекта
	Значение

	Название приложения
	CH12SendAndGetDataBackFromActivity

	Домен компании
	Название вашего сайта

	Поддержка Kotlin
	Да

	Форм-фактор
	Только для телефона и планшета

	Минимальный SDK
	API 23 Marshmallow

	Вид деятельности
	Пусто

	Название действия
	MainActivity

	Название макета
	activity_main

	Обратная совместимость
	Да. AppCompat

В этом проекте, как и в предыдущих демонстрациях, также есть два Activity, но есть еще несколько элементов View. Создайте два действия, как вы их создавали в предыдущих демонстрациях.
MainActivity имеет пару элементов View: два EditTexts для пользовательского ввода, Button и TextView, которые мы будем использовать для отображения BMI. Вы можете найти детали для объектов View, такие как id, высота и размер текста, в Листинге 12-14; это полный код для activity_main.xml.
Я сделал Виды очень простым расположением - я просто упаковал и центрировал их все по вертикали. Я тоже не особо заморачивался с ограничением макета. После просмотра аранжировки, которую я считал не такой уж отталкивающей, я использовал кнопку «вывести ограничения», чтобы автоматически исправить все ограничения макета, точно так же, как мы делали в предыдущих демонстрациях.
На рис. 12-13 показано, как управлять макетом для activity_main.
[image:]
Рисунок 12-13. Базовый макет для activity_main
В этом примере кода нет ничего лишнего для программной проверки входных данных, поэтому мы добавим некоторый механизм проверки в EditTexts. Поля ввода веса и роста должны содержать только числа, а именно числа с плавающей запятой; мы можем добиться этого, установив атрибут inputType представлений EditText. Вот как это сделать:
1. При редактировании activity_main в представлении «Дизайн» выберите одно из представлений EditText.
2. В окне инструментов атрибутов щелкните «inputType».
3. Выберите «numberDecimal».
4. Повторите шаги 1-3 для другого EditText.
Рисунок 12-14 иллюстрирует этот процесс.
[image:]
Рисунок 12-14. Поместите ограничение проверки на EditText
Это должно позаботиться об UI MainActivity. В листинге 12-14 показан полный код для activity_main.xml
Листинг 12-14. /app/res/layout/activity_main.xml
<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.ConstraintLayout xmlns:android=http://schemas.
android.com/apk/res/android
 xmlns:app=http://schemas.android.com/apk/res-auto
 xmlns:tools=http://schemas.android.com/tools
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".MainActivity">
 <EditText
 android:id="@+id/input_weight"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginTop="68dp"
 android:ems="10"
 android:inputType="numberDecimal"
 android:text="Name"
 app:layout_constraintEnd_toEndOf="@+id/input_height"
app:layout_constraintStart_toStartOf="@+id/input_height"
 app:layout_constraintTop_toTopOf="parent" />
 <EditText
 android:id="@+id/input_height"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginTop="23dp"
 android:ems="10"
 android:inputType="textPersonName"
 android:text="Name"
 app:layout_constraintEnd_toEndOf="@+id/btn_send_data"
 app:layout_constraintStart_toStartOf="@+id/btn_send_data"
 app:layout_constraintTop_toBottomOf="@+id/input_weight" />
 <Button
 android:id="@+id/btn_send_data"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginTop="21dp"
 android:text="calculate BMI"
 app:layout_constraintEnd_toEndOf="@+id/txt_bmi"
 app:layout_constraintStart_toStartOf="@+id/txt_bmi"
 app:layout_constraintTop_toBottomOf="@+id/input_height" />
 <TextView
 android:id="@+id/txt_bmi"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginTop="33dp"
 android:text="TextView"
 android:textSize="36sp"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toBottomOf="@+id/btn_send_data" />
</android.support.constraint.ConstraintLayout>

Вы можете использовать контекстное меню в AS3 для создания SecondActivity. Щелкните правой кнопкой мыши «приложение» в папке проекта, затем «Создать» ➤ «Действие» ➤ «Пустое действие», как показано на рис. 12-15.
[image:]
Рисунок 12-15. Создать новое пустое действие
Заполните детали для нового действия, как показано на рисунке 12-16. Убедитесь, что имя нового действия - SecondActivity и что вы создаете его в том же пакете, что и MainActivity.
[image:]
Рисунок 12-16. Создать SecondActivity
SecondActivity имеет два элемента View: TextView для отображения содержимого намерения, которое ему было передано, и Button для запуска вычисления BMI.
На рис. 12-17 показано, как выглядит пользовательский интерфейс SecondActivity. Центрируйте элементы в макете и используйте «предполагаемые ограничения», чтобы закрепить элементы в нужном положении. Вы также можете настроить атрибуты textAlign и textSize TextView по своему вкусу.
[image:]
Рисунок 12-17. activity_second.xml
В листинге 12-15 показан полный код activity_second.xml.
Листинг 12-15. /app/res/layout/activity_second.xml
<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.ConstraintLayout xmlns:android=http://schemas.
android.com/apk/res/android
 xmlns:app=http://schemas.android.com/apk/res-auto
 xmlns:tools=http://schemas.android.com/tools
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".SecondActivity">
 <TextView
 android:id="@+id/txt_intentdata"
 android:layout_width="346dp"
 android:layout_height="wrap_content"
 android:layout_marginTop="109dp"
 android:text="TextView"
 android:textAlignment="center"
 android:textSize="24sp"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent" />
<Button
 android:id="@+id/btn_calculate"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginTop="29dp"
 android:text="calc bmi"
 app:layout_constraintEnd_toEndOf="@+id/txt_intentdata"
 app:layout_constraintStart_toStartOf="@+id/txt_intentdata"
 app:layout_constraintTop_toBottomOf="@+id/txt_intentdata" />
</android.support.constraint.ConstraintLayout>

Давайте подробнее рассмотрим метод onCreate MainActivity. Как только приложение откроется, EditText будет ждать ввода данных пользователем. Как только пользователь нажимает кнопку, наше приложение соберет ввод и отправит его с намерением.
В листинге 12-16 показан аннотированный фрагмент MainActivity, который содержит код обработки события при нажатии кнопки.
Листинг 12-16. onCreate - метод MainActivity
val SECOND_ACTIVITY = 1000 ➊
override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.activity_main)
 input_weight.setHint("weight (lbs)") ➋
 input_height.setHint("height (inches)")
 btn_send_data.setOnClickListener {
 val m_intent = Intent(this@MainActivity, SecondActivity::class.java) ➌
 val m_bundle = Bundle() ➍
 m_bundle.putFloat("weight", input_weight.text.toString().toFloat()) ➎
 m_bundle.putFloat("height", input_height.text.toString().toFloat())
 m_intent.putExtra("main_activity_data", m_bundle) ➏
 startActivityForResult(m_intent, SECOND_ACTIVITY) ➐
 }
}

➊ Мы объявляем и определяем свойство, которое будет действовать как своего рода константа. Это то, что мы будем использовать в качестве кода запроса позже в коде.
➋ Мы устанавливаем атрибут подсказки для представления «Обычный текст». Подсказка отображается в виде серых заполнителей для текста. Если вы использовали атрибут placeholder в HTML 5, атрибут hint аналогичен этому.
Вы можете использовать подсказки как замену ярлыкам.
➌ Мы определяем явное намерение, это @ MainActivity - это контекст, а цель Intent – это объект класса (SecondActivity :: class.java).
➍ Нам нужно отправить две точки данных в SecondActivity. Если вам нужно отправить более одной пары пар ключ-значение, лучше использовать Bundles.
➎ Объект Bundle, как и Intent, также позволяет нам добавлять к нему данные несколькими способами. В этом примере я использовал putFloat (), потому что хотел работать с числами Float. Если вам нужно работать со String, Byte, Char, Int и т. д., просто используйте соответствующий метод putXXX.
➏ Мы загружаем, чтобы связать с объектом Intent. Использование пакетов с намерениями позволяет нам работать с более сложными структурами данных.
➐ Мы отправляем Activity, но на этот раз мы сообщаем среде выполнения, что мы ожидаем возврата некоторых данных - вот почему мы использовали startActivityForResult. Это сигнализирует среде выполнения о необходимости вызывать обратный вызов onActivityResult MainActivity всякий раз, когда другие действия вызывают свой метод finish (). Второй параметр startActivityForResult - это код запроса. Код запроса поможет нам направить логику программы, когда мы получим результаты. В этом вызове мы использовали константу класса SECOND_ACTIVITY в качестве кода запроса для запуска SecondActivity, что означает, что, когда SecondActivity вызывает свой метод finish (), этот код запроса также будет отправлен обратно в MainActivity.
Следующий этап упражнения происходит с обратным вызовом onCreate для SecondActivity.
После того как мы отправили данные о росте и весе принимающему Activity, мы должны извлечь эти данные и работать с ними. В листинге 12-17 показан аннотированный фрагмент этого кода.
Листинг 12-17. onCreate Метод SecondActivity
override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.activity_second)
 val bundle = intent.getBundleExtra("main_activity_data") ➊
val weight = bundle.getFloat("weight")
 txt_intentdata.text = "Height: $height | Weight: $weight" ➌
 btn_calculate.setOnClickListener {
 val m_intent = Intent() ➍
 val m_bmi = 703 * (weight / (height * height)) ➎
 m_intent.putExtra("second_activity_data", m_bmi) ➏
 setResult(Activity.RESULT_OK, m_intent) ➐
 finish() ➑
 }
}

➊ Нам нужно получить ссылку на объект Intent, связанный с SecondActivity. Это тот же объект Intent, который мы запустили из MainActivity. Это же намерение активировало SecondActivity. Чтобы получить связанный объект Intent, мы должны вызвать getIntent (), но поскольку мы используем Kotlin, вместо использования метода getIntent (), мы просто называем его намерением - свойством вместо метода. Просто помните, что здесь мы не создаем новое намерение, мы просто получаем ссылку на намерение, связанное с SecondActivity. Мы отправили пакет в MainActivity, поэтому для получения данных следует использовать getBundleExtra.
➋ Теперь, когда мы получили пакет, нам нужно начать получать больше данных из пакета. Мы использовали putFloat для помещения данных в пакет, поэтому нам нужно использовать getFloat, чтобы получить его.
➌ Мы устанавливаем текстовый атрибут TextView на объединенную строку высоты и веса.
➍ В этой строке мы создаем новый объект Intent. Это действие отправит некоторые данные обратно в MainActivity. Для этого нам нужно новое намерение.
➎ Это упрощенный способ расчета ИМТ, но он должен работать.
➏ Теперь, когда мы рассчитали ИМТ, давайте загрузим его в наш недавно созданный объект Intent.
➐ Метод setResult принимает два параметра:
a. resultCode. Это либо 0, либо -1. Как правило, если что-то пошло не так, вы хотите вернуть -1 или, если все пойдет хорошо, вы вернете 0. Но рекомендуется использовать константы класса в классе Activity. Activity.RESULT_OK равно -1, а Activity.RESULT_CANCELLED равно 0.
b. намерение. Это объект Intent, содержащий рассчитанный ИМТ.
➑ Наконец, чтобы вернуть результат вычисления в MainActivity, нам нужно вызвать finish ().
Следующая часть пути Намерения возвращается на MainActivity. После завершения вызовов SecondActivity среда выполнения вызовет обратный вызов onActivityResult для MainActivity - именно с помощью этого обратного вызова мы получаем возможность работать с любыми данными, отправленными нам SecondActivity. В листинге 12-18 показан аннотированный фрагмент onActivityResult из MainActivity.
Листинг 12-18. Аннотированный onActivityResult of MainActivity
override fun onActivityResult(requestCode: Int, resultCode: Int, data:
Intent?) {
 super.onActivityResult(requestCode, resultCode, data)
 if((requestCode == SECOND_ACTIVITY) and (resultCode == Activity.RESULT_
OK)) { ➊
 val bmi = data?.getFloatExtra("second_activity_data", 1.0F) ➋
 txt_bmi.setText(bmi.toString()) ➌
 }
}

➊ В этом выражении есть два теста:
1. requestCode == SECOND_ACTIVITY. Мы спрашиваем, поступают ли данные из SecondActivity.
2. Activity.RESULT_OK. Мы пытаемся узнать, вызывает ли SecondActivity setResult и действительно ли вызывает finish.
➋ Теперь, когда мы знаем, что данные поступили из SecondActivity и все прошло хорошо, мы можем извлечь данные из Intent. Мы использовали getFloatExtra, потому что знаем, что он содержит Float - мы все-таки поместили его туда. Нам пришлось использовать безопасный вызов (вопросительный знак) в данных ? getFloatExtra (), поскольку подпись объекта Intent, переданная в onActivityResult, является типом, допускающим значение NULL.
➌ Мы можем отображать рассчитанное значение ИМТ.
Если вы пишете код, к настоящему моменту вы сможете собрать все приложение вместе.
В листинге 12-19 показан полный код MainActivity. Вы могли заметить некоторые различия между этим полным списком и листингами 12-16 и 12-18. Я опустил пару других деталей в листингах 12-16 и 12-18 для краткости и ясности. В листинге 12-19 я исправил все упущения, и они помечены аннотациями, чтобы вы могли их легче заметить.
Листинг 12-19. Полный листинг кода для MainActivity
import android.app.Activity
import android.content.Intent
import android.support.v7.app.AppCompatActivity
import android.os.Bundle
import kotlinx.android.synthetic.main.activity_main.*

class MainActivity : AppCompatActivity() {
 val SECOND_ACTIVITY = 1000
 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.activity_main)
 input_weight.setHint("weight (lbs)")
 input_height.setHint("height (inches)")
 btn_send_data.setOnClickListener {
 val m_intent = Intent(this@MainActivity, SecondActivity::class.java)
 val m_bundle = Bundle()
 m_bundle.putFloat("weight", input_weight.text.toString().toFloat())
 m_bundle.putFloat("height", input_height.text.toString().toFloat())
 m_intent.putExtra("main_activity_data", m_bundle)
 startActivityForResult(m_intent, SECOND_ACTIVITY)
 }
 }
 override fun onResume() {
 super.onResume()
 clearInputs() ➊
 }
 override fun onActivityResult(requestCode: Int, resultCode: Int, data:
Intent?) {
 super.onActivityResult(requestCode, resultCode, data)
 if((requestCode == SECOND_ACTIVITY) and (resultCode == Activity.RESULT_
OK)) {
 val bmi = data!!.getFloatExtra("second_activity_data", 1.0F) ➋
 val bmiString = "%.2f".format(bmi)
 input_height.setText("")
 input_weight.setText("")
 txt_bmi.setText("BMI : $bmiString ${getBMIDescription(bmi)}")
 }
 }
 private fun getBMIDescription(bmi: Float) : String { ➌
 return when (bmi) {
 in 1.0..18.5 -> "Underweight"
 in 18.6..24.9 -> "Normal weight"
 in 25.0..29.9 -> "Overweight"
 else -> "Obese"
 }
 }
 private fun clearInputs() { // ➍
 input_weight.setText("")
 input_height.setText("")
 }
}

➊ Давайте очистим поле ввода. Мы помещаем этот вызов в обратный вызов onResume, чтобы каждый раз, когда Activity становится видимым для пользователя, поля ввода очищаются. Возможно, вы помните, что метод жизненного цикла onResume может вызываться несколько раз в течение времени существования Activity. Он будет вызван в первый раз при запуске приложения. Он будет вызван во второй раз, когда вызовы SecondActivity завершатся, MainActivity будет извлечен из заднего стека и т. д.
[bookmark: _GoBack]➋ Вместо использования data? .GetExtra (), который возвращал бы тип Nullable, я использовал data !!. getExtra (), который вернул тип, не допускающий значения NULL. Я сделал это, чтобы упростить наш код внутри функции getBMIDescription, которая ожидает тип, отличный от Nullable. Мы могли бы работать с Nullable внутри getBMIDescription, но я решил использовать более простой подход - работать с типами, отличными от Nullable.
➌ Эта функция принимает значение BMI Float и возвращает описание веса.
➍ Реализация initializeInputs (). Мы просто устанавливаем для свойства text EditTexts пустую строку.

Демонстрация 4: неявные намерения
Наше последнее демонстрационное приложение содержит неявные намерения. В этом разделе мы будем иметь дело с тремя типами данных: веб-URI, географическими координатами и номером телефона. Надеюсь, эти три примера дадут вам достаточно информации и основы для продолжения исследования неявных намерений. Как всегда, если вы хотите писать код вместе, детали проекта показаны в Таблице 12-4.
Таблица 12-4. Детали проекта для демонстрационного приложения
	Детализации проекта
	Значение

	Название приложения
	CH12ImplicitIntents

	Домен компании
	Использует имя вашего веб-сайта

	Поддержка Kotlin
	Да

	Форм-фактор
	Только для телефона и планшета

	Минимальный SDK
	API 23 Marshmallow

	Вид деятельности
	Пусто

	Название действия
	MainActivity

	Название макета
	activity_main

	Обратная совместимость
	Да. AppCompat

Приложение имеет простую настройку, единственное, что я сделал с activity_main.xml, - это удалил TextView «Hello World». Я использовал меню параметров, чтобы облегчить пользователю выбор запуска трех примеров намерений. Меню параметров находится на панели действий, как показано на рисунке 12-18.
[image:]
Рисунок 12-18. Меню MainActivity
В части пользовательского интерфейса делать нечего, поэтому нет необходимости показывать XML-список activity_main. Все, что нам нужно сделать, делается внутри MainActivity.
В предыдущих главах мы построили Меню, используя ресурс XML; в этом примере я построил меню немного иначе. Я не использовал ресурсы XML - вместо этого я создал все пункты меню динамически. В листинге 12-20 показан полный и аннотированный код MainActivity.
Листинг 12-20. Основное занятие
mport android.content.Intent
import android.net.Uri
import android.support.v7.app.AppCompatActivity
import android.os.Bundle
import android.view.Menu
import android.view.MenuItem

class MainActivity : AppCompatActivity() {
 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.activity_main)
 }
 menu?.add("Map")
 menu?.add("Phone number")
 return super.onCreateOptionsMenu(menu)
 }
 override fun onOptionsItemSelected(item: MenuItem?): Boolean { ➌
 var m_uri: Uri
 var m_intent: Intent = Intent()
 when (item?.toString()) { ➍
 "Web" -> {
 m_uri = Uri.parse("https://www.apress.com")
 m_intent = Intent(Intent.ACTION_VIEW, m_uri) ➎
 }
 	"Map" -> {
 m_uri = Uri.parse("geo:40.7113399,-74.0263469")
// Это сработало бы так же хорошо
l
// m_uri = Uri.parse("https://maps.google.com/maps
?q=40.7113399,-74.0263469")
 m_intent = Intent(Intent.ACTION_VIEW, m_uri)
 }
 "Phone number" -> {
 m_uri = Uri.parse("tel:639285083333")
 m_intent = Intent(Intent.ACTION_DIAL, m_uri)
 }
 startActivity(m_intent)
 return true
 }
}

➊ Обратный вызов onCreateOptionsMenu будет вызываться через некоторое время после вызова метода onCreate. До API 11 (Honeycomb) onCreateOptionsMenu вызывается только тогда, когда пользователь нажимает кнопку «Параметры» на телефоне, но, начиная с Honeycomb, он теперь называется onCreate.
Основная причина такого изменения поведения заключается в том, что ActionBar был введен начиная с API 11. Поскольку мы используем API 23, мы можем воспользоваться этим поведением для создания простого меню.
➋ Мы динамически добавляем пункт меню.
➌ Каждый раз, когда пользователь нажимает на один из пунктов меню, вызывается onOptionsItemSelected.
Здесь мы будем обрабатывать щелчки по меню.
➍ Параметр элемента может сказать нам, какой элемент меню был нажат. Мы конвертируем его в String, чтобы использовать его для маршрутизации логики нашей программы внутри выражения when.
➎ Это сокращенная версия создания намерения.
На рис. 12-19 показаны снимки времени выполнения нашего приложения.
[image:]
Рисунок 12-19. Неявное намерение, бег

Краткое содержание главы
· Намерения используются для активации компонентов.
· Есть два типа намерений: неявные и явные.
· Явные намерения позволяют нам работать с несколькими действиями. Вы можете активировать конкретное действие с использованием явного намерения.
· Неявное намерение расширяет функциональность вашего приложения. Это позволяет вашему приложению выполнять действия, выходящие за рамки функциональности вашего приложения.
· Вы можете отправлять и получать данные через намерения.
В следующей главе мы:
· Кратко познакомьтесь с материальным дизайном (немного).
· Узнайте, как создавать и применять стили и темы в нашем приложении.
· Узнайте, как добавлять меню в ActionBar.
image6.emf

image7.emf

image8.emf

image9.emf

image10.emf

image11.emf

image12.emf

image13.emf

image14.emf

image1.emf

image2.emf

image3.emf

image4.emf

image5.emf

